
Journal of Sound and <ibration (2002) 250(4), 711}722
doi:10.1006/jsvi.2001.3925, available online at http://www.idealibrary.com on
WAVE PROPAGATION THROUGH A CYLINDRICAL BORE
CONTAINED IN A MICROSTRETCH ELASTIC MEDIUM

R. KUMAR AND S. DESWAL

Department of Mathematics, Kurukshetra ;niversity, Kurukshetra, Haryana 136119, India.
E-mail: search@vidya.kuk.ernet.in

(Received 15 January 2001, and in ,nal form 14 August 2001)

Propagation of waves in a cylindrical bore "lled with viscous liquid embedded in
a microstretch elastic medium is investigated. Frequency equation for the surface wave
propagation near the surface of the cylindrical bore is obtained, characterizing the dispersive
nature of the wave. Signi"cant e!ects of viscosity, microstretch and micropolarity are
observed. Some special cases have been deduced.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

The problem of surface wave propagation near the bore hole in elastic host medium is of
great practical importance. Since valuable organic and inorganic deposits beneath the
earth's surface are di$cult to detect by drilling randomly, the wave propagation technique
is the simplest and most economical and does not require any drilling through the earth.
Almost all the oil companies rely on seismic interpretation for selecting the sites for
exploratory oil wells. Seismic wave methods also have higher accuracy, higher resolution
and are more economical, as compared to drilling which is a costly and time-consuming
a!air.
Modern engineering structures are often made up of materials possessing an internal

structure. Polycrystalline materials, materials with "brous or coarse grain structure come in
this category. Classical elasticity is inadequate to represent the behavior of such materials.
The analysis of such materials requires incorporation of the theory of oriented media.
&&Micropolar elasticity'' termed by Eringen [1] is used to describe the deformation of elastic
media with oriented particles. A micropolar continuum is a collection of interconnected
particles in the form of small rigid bodies undergoing both translational and rotational
motions. Typical examples of such materials are granular media and multimolecular bodies,
whose microstructures act as an evident part in their macroscopic responses. The physical
nature of these materials needs an asymmetric description of deformation, while theories for
classical continua fail to accurately predict their physical and mechanical behavior.
Eringen [2] introduced the theory of microstretch elastic solids as a generalization of the

micropolar theory. The material points of microstretch solids can stretch and contract
independent of their translations and rotations. A microstretch continuum can model
composite materials reinforced with chopped elastic "bers and various porous solids.
Di!erent authors [3}12] discussed di!erent problems in microstretch/micropolar
elastic/elastic medium. The present study is concerned with the problem of surface wave
propagation in a cylindrical bore "lled with viscous liquid and contained in a microstretch
elastic medium.
0022-460X/02/090711#12 $35.00/0 � 2002 Elsevier Science Ltd.



Figure 1. Cylindrical co-ordinate system, z along the axis of the bore.
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2. PROBLEM FORMULATION AND SOLUTION

We consider a cylindrical bore of radius &&a'' having a circular cross-section in
a microstretch elastic medium of in"nite extent. We are studying the propagation of axial
symmetric waves which are pure sinusoidal along the axial direction. Cylindrical polar
co-ordinates (r, �, z) are considered with z-axis pointing upwards (Figure 1).
Following Eringen [13], the "eld equations and constitutive relations in a microstretch

elastic solid are given by
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and �, �,K, �, �, 	, �
�
, �

�
, �

�
are material moduli, � the density, and j the microinertia. u and

� denote the displacement and microrotation vectors, while �* is the scalar microstretch,
t is the time, t

��
andm

��
are components of force stress and couple stress respectively. �

�
is the

microstress that induces an extension to the microelements.
We are discussing a two-dimensional problem with symmetry about the z-axis, so

all the partial derivatives with respect to the variable � would be zero. Therefore, we
have
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On substituting equations (9) into equations (1)}(3) with the help of equation (8), then
eliminating � and �* from the resulting expressions, we obtain
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The time-harmonic wave solutions of equations (10) and (11) for the wave propagating in
the positive direction of z-axis are given by
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where K
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( ) is a modi"ed Bessel function of order zero and of second kind, � ("kc) is the

frequency of the wave, k is the wave number and c is the phase velocity. q�
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Following Fehler [14], the equations for wave propagation in a viscous medium are
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where, K� is the bulk modulus, � is the #uid viscosity and �� is the #uid density.
The stresses in viscous liquid medium are given by
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where, U is the displacement vector.
Since the problem is axi-symmetric, we take
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where, the displacement components in viscous liquid medium are given by
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The time-harmonic wave solutions of equations (21) and (22) may be written as
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and I
�
( ) is the modi"ed Bessel function of order zero and "rst kind.

3. BOUNDARY CONDITIONS

The boundary conditions are the continuity of stresses and displacements at the interface
r"a, between the microstretch elastic medium and viscous liquid. Since couple stresses and
stress moment do not support the viscous liquid, therefore these must vanish there.
Mathematically, these boundary conditions can be expressed as
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Using equations (4)}(9), (13)}(16), (19), (23) and (25)}(27) in the above boundary
conditions (29), we shall obtain a system of six homogeneous equations in unknownsA
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is dispersive in nature as follows:
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4. SPECIAL CASES

(1) If �P0, we obtain the frequency equation in a microstretch elastic medium containing
a cylindrical bore "lled with a homogeneous, inviscid liquid, as
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bulk modulus of liquid.
(2) If the bore is empty, the boundary conditions (29) take the form
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a microstretch elastic medium as
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(3) If we neglect the stretch e!ect in equation (30), then the problem reduces to that of
wave propagation in a cylindrical bore "lled with viscous liquid and situated in
a micropolar elastic medium. The dispersion equation obtained in this case coincides with
the dispersion equation obtained by Deswal et al. [15].
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Equation (36) is the frequency equation in a micropolar medium of in"nite extent
containing a cylindrical bore "lled with homogeneous, inviscid liquid and is the same
dispersion equation as obtained by Banerji and Sengupta [16].
By taking K"0, in equation (36), we obtain the frequency equation as
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Equation (38) is the same dispersion equation as obtained as Biot [17]. Equation (39) refers
to a hypothetical medium in which only rotation and couple stresses may exist and is
obtained by using the boundary condition m

��"0.
(5) By neglecting stretch e!ect in equation (35), we obtain the frequency equation in

a micropolar elastic medium containing an empty cylindrical bore as
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Equation (41) is the same frequency equation as obtained by Banerji and Sengupta [16].
(6) If we neglect the microstretch e!ect of the medium by putting K"�"	"
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"0, in the frequency equation (30), we obtain the frequency equation for wave

propagating in the bore hole "lled with viscous liquid and situated in an elastic medium as
obtained by Deswal et al. [15].
(7) In order to reduce the problem of wave propagation in a cylindrical bore "lled with

homogeneous, inviscid liquid and passing through an elastic medium of in"nite extent we
make the micropolar constants equal to zero in equation (36). The resulting dispersion
equation corresponds to the dispersion equation obtained by Biot [17] for the relevant
problem.
(8) By neglecting micropolar e!ect in equation (41), we obtain the frequency equation in

an elastic medium containing empty cylindrical bore as obtained by Biot [17].

5. NUMERICAL RESULTS AND DISCUSSION

Frequency equation (30) is solved for phase velocityC
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of the wave number in non-dimensional form to study the viscous and stretch e!ects on
dispersion equation numerically.
Following reference [18], the physical constants used are

�"7)59�10�� dyn/cm�,

K"0)0149�10�� dyn/cm�,

	"2)63�10� dyn,

�"2)192 g/cm�,

�
�
"�

�
"11)37�10�� dyn/cm�,

�"1)89�10�� dyn/cm�

�"2)26�10� dyn,

j"0)196�10� cm�

��/��
�
"8)0,

�
�
"1)61�10�� dyn.



Figure 2. Variations of dimensionless phase velocity versus dimensionless wave number: (� � � � �), I,
microstretech, viscous liquid; (�� ���), II, microstretch, inviscid liquid; (�����), III, microstretch, empty.

WAVE PROPAGATION THROUGH A CYLINDRICAL BORE 719
For viscous liquid, the values of elastic parameters for kerosense oil [19, pp. 363 and 366]
are taken as

cl"1320�10� cm/s, ��"0)8201 g cm�, �"0)0164 P.

The following values are taken from Ewing et al. [20] for inviscid liquid as

K
�
"2)14�10�� dyn/cm�, �

�
"1)0 g/cm�.

The values of dimensionless phase velocity C
�
("c/c

�
) are obtained as a function of

dimensionless wave number ka to study the e!ects of viscosity, microstretch and
micropolarity on dispersion curves in Figures 2}4. Figure 2 shows the e!ect of viscosity on
dispersion curves. The values of phase velocity, when the bore is "lled with viscous liquid,
decrease monotonically with the increase in wave number and "nally attain a constant
value beyond ka"8)0. The values of phase velocity, in this case, lie in a higher range in
comparison to the case of bore "lled with inviscid liquid. These variations are shown by
curves I and II in Figure 2 and depict the viscous e!ect on phase velocity. It is observed that
curves I and II have opposite behavior due to viscous e!ect. Curve III represents the
dispersion curve when the cylindrical bore is empty and situated in a microstretch elastic
medium.
Microstretch e!ect on dispersion curves is shown in Figure 3. When the bore is "lled with

viscous liquid, the values of phase velocity vary in lower range in microstretch elastic
medium in comparison to elastic medium, whereas in the case of empty bore and bore "lled
with inviscid liquid, the reverse happens after a small range (0)ka)1)8), i.e., phase



Figure 3. Variations of dimensionless phase velocity versus dimensionless wave number: (� � � � �), I,
microstretech, viscous liquid; (���� �), II, microstretch, inviscid liquid; (�����), III, microstretch, empty;
(�����), IV, elastic, viscous liquid; (} } } }), V, elastic, inviscid liquid; (* *), VI, elastic empty.

Figure 4. Variations of dimensionless phase velocity versus dimensionless wave number: (����), I,
micropolar viscous liquid; (**), II, micropolar, inviscid liquid; (-------), III, micropolar, empty; (����), IV,
elastic, viscous liquid; (} } } }), V, elastic, inviscid liquid; (* *), VI, elastic, empty.
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velocities for microstretch elastic medium are more than the elastic medium. In Figure 4, the
e!ect of micropolarity is observed by comparing curves, I, II, III with IV, V and VI
respectively. It is observed that in all three cases, i.e., when the bore is "lled with viscous
liquid, inviscid liquid and empty bore, the values of phase velocity in the elastic medium are
slightly less than the micropolar elastic medium.

6. CONCLUSIONS

A mathematical study is presented here to determine the e!ect of viscosity, microstretch
and micropolarity on surface wave dispersion in bore holes. The frequency equations for
two particular cases (micropolar elastic medium and elastic medium) are obtained from the
frequency equation of the present problem. Numerical computations are performed to solve
the frequency equation and it is seen that the phase velocity of wave propagation depends
on wave number, showing that the frequency equations are dispersive. Also, the e!ect of
viscosity and microstretch are more signi"cant than the e!ect of micropolarity on
dispersion curves.
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